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I. INTRODUCTION

There are many metrics for gauging software during the various activities of development,
but each leaves questions about the quality and maintainability of the software. A new metric
is proposed which may overcome some of these problems while giving a strong intuitive model
for gauging progress through design, coding, and testing phases of development. A proposal is
made for the collection of data for testing and evaluation of this model.

A. Purpose

This document serves as an updated revue of software metric literature and a pro-
posal for developing software metric tools. It can be used as a source book for entry into cur-
rent publications regarding metrics and a reference for the general content of well known
metrics.

B. Application

The U.S. Army Missile Command, Software Engineering Directorate is responsible,
as a Life Cycle Software Support Center, for maintenance of missile system embedded soft-
ware and for a technology assessment and consultation concerning the acquisition of such soft-
ware. A spectrum of metrics is required for maintenance and prediction of schedules and coun-
seling regarding software system architectures and methodologies. This report provides insight
into characteristic factors which can be and have been measured. The references give access to
more detailed information.

In addition, a proposal is made to collect data from the various projects maintained
by the directorate to more effectively evaluate proposals and software development efforts by
contractors developing missile system software. The metric model presented is a framework
for the collection and evaluation of the required information.

C. Organization

The paper first surveys management indicators, software quality data collection and
measures, and software structural metrics. Details are provided concerning the factors which
contribute to each metric. Calculation equations are presented where applicable. Comments
are made concerning the comparison of various methods and models.

An evaluation is made of the various metrics for use in the software acquisition proc-
ess. Measurable factors are identified in relation to the phase in the development cycle during
which they are available and beneficial.

A unified model gives a framework for the analysis of the effects of the various fac-
tors on subsequent maintainability of the software. The model is extended to enhance the in-
tuitive insight gained from use of the unified model.

A mapping is made between the metric factors and the structural features of the Ada
programming language.




IL. SURVEY OF SOFTWARE METRICS

A sizable library of software metrics is available. This brief survey will put most of the
commonly used ones into perspective by describing their content and elucidating their method-
ologies. They are classified here as management indicators, software quality measures, and
structural complexity measures.

A. Management Indicators

Software acquisition demands the use of management indicators as mandated by AR
70~13 and the standard review processes [13]. Government and contractor staff are familiar
with these measures, but they are included here for completeness.

There are some good and fairly widely used methods of predicting project size,
schedule, and cost. These methods are empirical, statistically based, and oriented, due to their
databases, toward specific applications. For example, the Constructive Cost Model
(COCOMO) (5] for computing development time says

MM = a(KDSI)®m(x),

where MM is the number of man—months required to produce the software product, a and b are
empirically derived constants obtained from production mode and level definitions, Thousands
of lines of Delivered Source Instructions (KDSI) is the code, and m(x) is a factor computed
from cost—driving attributes. The level and production mode parameters reflect the size and
constraints required by the specific project. The cost driving attributes used to compute m(x)
are:

Product attributes
required software reliability
database size
product complexity
Computer attributes
execution time constraint
main storage constraint
virtual machine volatility
computer turnaround time
Personnel attributes
analyst capability
application experience
programmer capability
virtual machine experience
programming language experience
Project attributes
modern programming practice
use of software tools
required development schedule.

A derivative of COCOMO called SECOMOQ was developed by the Army. These measures are
highly dependent on KDSI which may not be easy to estimate early in a project. None of these




factors are computed from the design structure of a project’s computer programs. If there were
a way to calculate KDSI from the architectural and communication structure of the early top
level design, more confidence could be placed in the validity of progress reports based on
KDSI dependent measures. For example, just because 90 percent of the program code is com-
plete it may not be the difficult 90 percent.

An approach to measuring predicted size comes from function point analysis [30], a
metric based on both software characteristics and environment [4]. The size of a program
module in lines of source code is computed as

SIZE(SLOC) = (ARCHYEXPF)((LANG*FPA)+0O0CN)2»
where the factors are defined as:

ARCH = architectural factor

EXPF = expansion factor

LANG = language expansion factor

FPA = adjusted function point count
OOCN = normalized operand/operator count.
a = reuse factor.

Each of the factors has a defined range and is adjusted in magnitude for the specific application
being sized. Typically, the architectural factors would be defined as:

centralized 1.0
tightly coupled multiprocessor 1.3
loosely coupled multiprocessor 1.5
federated 1.6
distributed with central database 1.8
fully distributed 2.1
array processor 0.9

The expansion factor EXPF is a product,

EXPF = o[ SMi

where ck is a calibration factor and SMi is a size modifier which can be defined typically as:

requirements volatility 95 to 1.18
database size 94 to 1.11
degree of real time 90 to 1.16
use of modern programming techniques 93 to 1.11
use of software tools .89 t0 1.10
analyst capability 89 t0 1.19
application experience 91to0 1.15
environment experience 95 to0 1.10
language experience 91to 1.13.




LANG for the language Ada would be 72 lines of code per function point with a correlation of
about .887 for Reifer’s data set. The function point count FPa is the sum of inputs, outputs,
master files, modes, and interfaces. For real time systems, the sum would include stimulus-re-
sponse pairs and rendezvous.

Function point analysis depends indirectly on the internal structure of the source
code. It has reportedly [30] been successful in measuring 28 projects within 20 percent and has
been made accessible through desk top computers. But, the internal structure of modules is not
visible enough to determine whether the most complex or difficult work on a project has been
completed or even well defined.

There are other methods in addition to COCOMO for measuring effort as surveyed
by [9]. These include:

1. criteria based on validity, objectivity, ease of use, sensitivity,
transportability, and other subjective top level qualities,

2. methods based on least squares curve fit to parameterized linear
and non-linear functions of time which represent effort level,

3. level of difficulty models which are calculations based on subjective
estimation of level of difficulty of various phases of development,

4, statistical models using regression analysis to fit polynomials or other curves,
such as the Rayleigh distribution, to data on software development time,

All of these management indicators are intended to provide top-level and not a de-
tailed view of the software and [1] its development. A survey of management indicators shows
measurements for computer resource utilization, software development effort, requirements and
definition stability, software progress, development and test, cost/schedule deviations, and the
use of software development tools.

B. Software Quality Measures

As can be seen from a general survey of the literature on software metrics [10], there
are:

1. classic metrics based on software science, cyclomatic complexity, and function
points,

2. life cycle metrics based on analysis, software design, code structure, quality
assurance, and method,

3. code metrics designed for specific languages,

4. new metrics based on the development process and effort, graph structure
of software, and information content,

5. metrics based software process models.

From the abundance of software measuring methods there should come better metrics. The
ideal metric should be an automatable one based on the architectural and communication struc-
ture of the abstract software system such that progress in the development process can be
measured and an intuitive judgement can be made as to the complexity and quality of the re-
sulting software [24,28].




Many metrics of software quality and style indicators use internal properties of code,
some being very subjective and others being automated and analytical. Most of these require
source code for analysis, and thus cannot be initiated in the design phases of a project. But,
these metrics give valuable insight into what should be measured in order to determine the in-
ternal quality, complexity, and developmental progress of software. In contrast to management
indicators, quality indicators have a higher level of resolution with respect to the internal char-
acteristics of the software.

Generally, the highest level attributes have been related to low level characteristics of
software, but not in a quantitative way. For example, [31] shows the relationships demon-
strated in Figure 1. As Rossan points out, design indicators are measured, using some common
scale, from programs and documentation citing attributes present in the software. Management
indicators are the results of reviews, inspections and tests, and software behavior using behav-
ioral and acquisitional metrics. What is needed is a set of design indicators which can be used
as the basis for management indicators of a more meaningful nature.

—ooAtmbute: S Activities: e Charctenstics o ___
maintainability Hierarchical coupling
decomposition
comectness function cohesion
decomposition
reusability information complexity
hiding
testability st;_p—wiset well defined
relinemen interfaces
reliability structured readability
programming
portability
life cycle e:se of
verification Cchange
adaptability concurrent traceability
documentation
visibility of
behavior
early error
detection

Another approach to the organization of metrics for software quality is given by [3].
A quality metric tree, shown here in indentured form, shows the relationships of higher level
properties to lower level software characteristics:

Quality
correctness
completeness, consistency, traceability




efficiency
concision, execution efficiency, operability
flexibility and maintainability
complexity, concision, consistency, expandability, generality, modularity,
self documentation, simplicity
integrity
auditability, instrumentation, security
interoperability
communication, commonality, generality, data commonality modularity
portability and reusability
generality, hardware independence, modularity, self documentation, software
system independence
reliability
accuracy, error tolerance, simplicity, consistency, modularity
testability
auditability, instrumentation, self documentation, simplicity, complexity,
modularity
usability
operability, training

The lower level characteristics specified in this model can not be measured economically with
today’s technology. Nevertheless, all of these factors should contribute in some way to the
evaluation of a software product. Even though, as pointed out by [11], it is difficult to have a
metric which can measure both process and product, there should be a way for these factors to
provide feedback to developers and programmers as the project unfolds.

One way to provide such feedback is the work sheets which result from reviews. In
fact, work sheets [34] and check lists [29] often provide a principle medium for measuring soft-
ware quality. Manuals have been written [26] which present trade—offs generated by software
standards and delineate quality factor rating guidelines based on subjective work sheets. Integ-
rity, maintainability, portability, reusability, usability, testability, flexibility, and inter-
operability are all at odds with program code efficiency in the traditional sense. Flexibility,
interoperability, and reusability must be balanced with the code integrity. Reusability must be
measured with respect to reliability. Factors such as these can be measured subjectively using
worksheets and quality factor rating guidelines. Factors and metrics used in such evaluations
are typically [26] quality of comments, complexity, completeness, operability, user interface,
data commonality, effectiveness of comments, traceability, consistency, training, and communi-
cation commonality. Check sheets generate values which form a matrix for k modules and n
module level measurements as

mpm2... Mg

mnl ...mnk

From this matrix, indicators can be calculated such as, for metric i, the average and distance
from mean would be
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Based on the result, a module j would be reported for examination if
M; i < Ai—-0i.

Factors in this model can be normalized by data from previous projects. Thus, resolution and
flexibility for application are available using these methods, but, a more objectively based met-
ric would be preferable.

Another aspect of software quality, which must be measured for the purpose of soft-
ware acquisition, is supportability. A supportability metric has been developed by Frank
Blackwell of the Army Missile Command’s Software Engineering Directorate. This model is
based on the COCOMO model [5]. The Subsystem supportability factor is calculated by sum-
ming the values for each factor selected in a supportability matrix and then subtracting the total
from 100. A subsystem scoring the highest supportability in each factor will receive a rating of
100 (excellent). A subsystem scoring nominal in each factor will receive a rating of 75 (fair).
Any subsystem scoring below 60 is considered to have unacceptable supportability. Also, a
subsystem can be rated as having unacceptable supportability if the Memory or Throughput
Utilization exceeds a specific value. The overall subsystem suppportability average is calcu-
lated by multiplying each of the subsystem supportability ratings by the subssystem source
lines of code, totaling the scores, and then dividing by the total source lines of code. The four
system supportability factors are then totaled and added to the subsystem average for the sub-
system supportability rating. If a subsystem is determined unsupportable, the system suppor-
tability should be calculated without the subsystem and the unsupportable subsystem should be
identified. The model can be used to determine deficient areas and areas where improvement
will result in a higher supportable rating. The supportability factors and their definitions are
shown in Figure 2.

Indirect approaches to quality measurement have been used such as examination of
the design documentation as the primary data source. Taxonomies have been developed to aid
in such documentation analysis. The following documentation tree {33] shows many factors
common to the quality of the program code itself.

adequacy
accuracy
requirement/design traceability
(top down, bottom up equivalence )
consistency
conceptual
(invariance of concept)
factual
interface, database security, error recovery, /O,
performance, timing




completeness
domain coverage
document relationships
decomposition (refinement enunciation)
referential
TBD/TBS, % missing, % appropriate
modification tracking
code
documents
usability
logical traceability
references (TBD/TBS, missing, appropriate)
term consistency
sufficiency of index and table of contents
intra—document completeness
readability (consistency, standards)
physical (print, format, modularity)
accessibility/availability
expandability

In this model, the recurring themes of measurable upper level supported by subjectively meas-
urable lower level parameters appear. The dependence on secondary characteristics introduces
another level of abstraction away from measuring the actual software architecture.

To some extent the quality of software can be determined by the nature of the fault
structure which emerges during testing and integration. Fault analysis is an important part of
measuring software quality and reliability. Standard metrics for fault content [20] are:

1. fault density per Thousand Lines of Source Code (KLOC),
2. defect density per KLOC based on defect found in reviews,
3. cumulative failure profile

4. fault-days and various combined defect indices.

Fault analysis is a two edged sword in that the more faults collected for the analysis
the more valid the model is; yet, more faults (disregarding seed faults) undermine confidence in
the system. One type of fault analysis which can be easily automated is the determination of
variables defined but not used [36]. This method is based on predicate calculus models of re-
quirements and leads ‘o specification—dependent testing of software. The system generates test
data and programs. In this case, an evaluation metric is not the end product. Another example
of a fault analysis system produces random inputs independently from the input domain accord-
ing to a typical operation distribution. Errors produced are counted and analyzed using deter-
ministic Baysian and Markov error counting models. Although automated tools can be used to
collect fault data, the major problem remains in not having the metrics early enough in the pro-
ject’s development.

Intuitively, design quality can contribute to fewer faults for correction in the end
product. In view of this, measurement of specific attributes of the software resulting from a
design would be helpful. An example of such an approach is [2]. This particular method




collects data on the properties of developed program code to determine whether a given devel-
opment methodology can generate high quality code. The factors used in this analysis are de-
scribed by the following tree:
Reusability
Hierarchical decomposition
Information hiding
coupling
cohesion
well defined interface
globals, passed parameters, execution coupling
data structure coupling, parameterless calls
ease of change
complexity
Functional decomposition
Concurrent documentation

The goal was to design an automated system for computing the quality. There are automated
tools commercially available which claim to calculate numbers for source code quality. One
such tool is ADAMAT. Unfortunately, the metric is proprietary making analytic evaluation
difficult. Another commercial tool is called Logiscope from the French company Verlog [35].
It collects and analyzes statistics from source code of programs. This package uses the metrics
of Halstead, McCabe, and Mohanty discussed later in this paper.

In order to summarize standard metrics being used, the IEEE has published a stan-
dard dictionary of software measures [20] which presents a collected reference list of descrip-
tions of useful metrics. The list of Table 1 categorizes the measures into seven groups. The
number in parentheses is the number of the measure as it appears in the dictionary. Measures
preceded by I are intensive and those preceded by E are extensive in nature.

TABLE 1. Software Measures.
Based on faults

I (1 Fault Density

I (2 Defect Density

E (3 Cumulative Failure Profile

E (4 Fault-Days Number

I (8 Defect Indices

E (9 Error Distribution

I @11 Manhours Per Defect

I (20) Mean Time To Discover the Next K Faults
I (21) Purity Level

I (22) Estimated Number of Faults Remaining (by seeding)
I @27 Residual Fav't Count

I (28 Failure Analysis by Elapsed Time

I (29 Testing Sufficiency

I (30 Mean Time to Failure

I (31 Failure Rate

I (36) Test Accuracy

E (38) Independent Process Reliability




TABLE 1. Software Measures (continued).
Based on Requirements

I (95 Functional or Modular Test Coverage
I (6 Cause and Effect Graphing

I (7 Requirements Traceability

I (10 Software Maturity Index

E (12 Number of Conflicting Requirements
E 17 Minimal Unit Test Case Determination
I (23) Requirements Compliance
I (29 Test Coverage
I (35 Completeness

Related to Test Design

I (5 Functional or Modular Testing Coverage
E (17 Minimal Unit Test Case Determination

I (18) Run Reliability

I (29) Test Coverage

I (26) Reliability Growth Function

Related to Variable Counts

E (149 Software Science Measures
E (25 Data or Information Flow Complexity

Related to Software Structure

E (13) Number of Entries and Exits per Module

E (15 Graph-theoretic Complexity for Architecture
E (16) Cyclomatic Complexity

E (32 Software Documentation and Source Listings

Based on Performance

E (37 System Performance Reliability
I (39 Combined Hardware and Software Operational Availability

Based on Management Parameters

I (33) RELY (Required Software Reliability)
I (349 Software Release Readiness

In terms of internal software attributes, there are several important factors to determine in
measuring software quality. Table 2 shows some factors and how they might be measured
during the various phases of software development. Experimentation must determine which
factors correlate with errors and maintenance and to what extent. There is large potential for
significant work in this area. As pointed out in the previous sections of this paper, several fac-
tors and metrics have already been identified as significant.
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TABLE 2. Sources for Metric Data.
factor \phase HMCD CMCD DD PDL CODE TEST

number of modules accessing

data variable C C C C C AEC
control variable C C C C C AEC
data structure C C C C C AEC
subprogram - C - C C AEC
exception - C - C C AEC
compilation unit - C - C C AEC
factor \phase HMCD CMCD DD PDL CODE TEST
items accessed by a module
data variables EST C C C C AEC
control variables EST C C C C AEC
internal variables - - C C C AEC
internal data struct - C C C C AEC
data structures C C C C C AEC
files C C C C C AEC
subprograms EST C - C C AEC
rendezvous C C - C C AEC
exceptions - C C C C AEC
compilation units - C - C C AEC
states - - - C C AEC
operation modes EST C - C C AEC
execution paths - - - C C AEC
requirements met C C C C C AEC
algorithm determinacy EST EST - EGT EGT ICB
commentary description ICB ICB - EGT EGT -
Valid loop termination - - - - ICB ICB
lines of code EST EST - EST C -
factor \phase HMCD CMCD DD PDL CODE TEST
variables’ parameters
scope - TSH CPA TSH TSH AEC
value range - - CPA CPA CPA AEC
type - - EGT EGT EGT EGT
type variegation - - C C C C
access mechanism - - EGT EGT EGT AEC
containing structure - TCS TCS TCS TCS AEC
effect (data, control) - EGT EGT EGT EGT AEC
exceptions - C C C C AEC
machine dependencies - - ICB ICB ICB AEC

initial value - - ICB ICB ICB ICB

i1




TABLE 2. Sources for Metric Data (continued).

units/scale - -
error containment - EGT
validity proveability - -
loop termination - -
name length - -
requirement item C C
format - -
internal cohesion - -
volatility - -
commentary description - -
Abbreviations:

column headings:

EGT
EGT

ICB
C
EGT
EGT
EGT
ICB

HMCD high level module communication diagram
CMCD complete module communication diagram

DD data dictionary

PDL program development language document

CODE source code for the computer program

TEST  test results statistics report

methods of measurement
AEC count in actual execution

C count all potential occurrences

CPA count possible occurrences in range
ECI evaluate computational impact

EGT evaluate graded types

EST use pre—defined estimation factor
ICB increment a count of boolean values
TCS trace and count containing structures

TSH count total through sub-hierarchy
- measurement not appropriate

ECI
ECI
ECI
ICB
ICB
C
EGT
EGT
EGT
EGT

ECI
ECI
ECI
ICB
ICB

EGT
EGT
EGT
EGT

In the design phase, most of the evaluation must be subjective. Initial software mod-
ule communication diagrams can be used to establish and evaluate encapsulation and abstrac-
tion of variables, data structures, external devices and subprogram units. The Hrair limit limit-
ing the number of structures at any one level can be enforced by counting modules. The initial
graphs can be used to aid construction of a requirements traceability matrix and a data diction-
ary which contain much more precise data about the system communication architecture. As
the system architecture is recursively refined, more precision is available for measurable quan-
tities. The use of development tools will greatly enhance not only the collection of data for
metrics but also the enforcement of development standards which can improve system reliabil-

ity.

When designing and writing programs, the programmer/analyst is aware of specific
attributes which add or reduce the chaos or improve the probability of success of the software
as an entity. Low scores are desirable for the m(x) factor in the COCOMO model, low scores
are desirable for function point parameters, high ratings are desirable for the “~ilities” of sub-
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jective software quality, low probability of faults is needed, high scores on commercial metrics
are desired, and low complexity metric values are sought. In order to measure the quality of
software, key elements from the usable indicators need to be extracted and distilled into a well
formulated, consistent, and validatable model. To achieve coveted values for metrics, the code
must adhere to certdin standards which are measurable from the design and code of the soft-
ware. For some examples, it must

. exhibit a low degree of coupling between modules

. have a highly coherent algorithmic structure

. demonstrate good encapsulation of data structures, procedures, and functions, with
proper exception handling,

. use well defined typing of variables including value limits, and initialization,

. have a standard well formed architecture,

. demonstrate adequate commentary,

. use only portable features of the implementation language.

NN A W N

None of the methods seen thus far can measure, from design through test, the internal
quality, complexity, and progress of computer program development. In other words, the stan-
dard measures for software fall short of being able to measure effectively the factors which
contribute to difficulty of creation and maintenance. There should be an automatable software
metric designed which can integrate quality and architectural factors into an intuitively inter-
pretable dynamic gauge of the product.

C. Supportability Factors

1. Distinct programming languages — The number of distinct programming lan-
guages utilized in the system

2. Distinct Architectures — The number of distinct hardware architectures utilized
in the system. Families of processors, such as the 680XO0, are considered a single architecture.

3. Delivery — The level of Life Cycle Software Support Environment hardware,
support software, and documentation delivered.

Fotscscccoccscoceccccnoons all commercial, project funded
S proprietary software rights
voo. fTTTmmmmmsmmmmocses all applicable licenses
R REREEREEEEEEE: executing hardware
oo possseseses- software documentation
Lo I software users manuals
© v v Y v v 7°°°" proper operation is demonstrated

NOMINAL X X X X X X X

LOW X X X X X

VERY LOW X X

EXTRA LOW X
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4. Software Management - the level of software configuration management, soft-
ware quality management, and management insight into the software development process to
ascertain satisfactory development progress and status accounting.

+- - - -software quality assurance independent of the software development
project management, formal procedures to assure periodic management
review of the status of the: software development process, mechanisms
in place for assuring that software subcontractors follow a disciplined
software development process, formal configuration management of the
tactical and support software,

--coding standards, internal independent verification; and validation, and
software development indicators.

+-Informal software configuration management, limited software quality

* assurance, and minimal design reviews

HIGH XX
NOMINAL X
LOW X

5. Subsystem Size — The size of the software subsystem. The subsystem size fac-
tor takes into account the size, in lines of code, of the subsystem software and the implementa-
tion language. ADA HOL - Software programmed in Ada and compiled on a validated Ada
compiler. NON-ADA STANDARD HOL - Software programmed in a standard high order
language other than Ada.SPECIAL APPLICATION ASSEMBLY LANGUAGE - Software
programmed in assembly language for a special purpose processor.

6. Design Complexity — The complexity of the software subsystem.

7. Memory Utilization — The program instruction and data storage memory
utilization of the target processor(s).

8. Throughput Utilization — The throughput utilization of the target processor(s).

9. Program Design Language (PDL) Implementation — The PDL used in develop-
ing the subsystem software.

HIGH - An Ada format PDL which can be successfully compiled by a validated Ada compiler
is used during the design of the software.

NOMINAL - A non-Ada PDL is used in designing the software.

LOW - No PDL is used in designing the software.

10. Processor Type — The type of processing element which executes the subsystem
software.

HIGH - The software is executed on a commercial computer.

NOMINAL - The software is executed on a standard general purpose processor.

LOW - The software is executed on a special purpose processor.

VERY LOW - The software is executed on a processor developed specifically for the appli-
cation.

11. Computer Turnaround Time - The computer response time of the software

support environment (compile time, etc.). TURN: Computer Turnaround Time.
12. Modern Programming Practices - The degree to which modern software
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engineering and programming practices are used in developing the software. MODP: Use of
Modern Programming Practices.
13. Tools — The degree to which automated software tools are used in developing
the software subsystem.
TOOL: Tool support.

R R RRE Rl development tools commercially available
P remececcan on call maintenance is available
N b maintenance contract is available
e support is available
N custom tools

VERYHIGH X XXX

HIGH X XX

NOMINAL X X

LOW XX development tools obsolete. No support.

14. Software Documentation — The level of software documentation developed for
the software subsystem.

 eeeeceeceana- Approved Standard Software Documentation
E o Independent Verification and Validation
VoLt documentation includes software
v 0 software design documents, software test
v plans, procedures, and reports,
Vol e requirements specifications, product
. e specification.
P contractor format.

HIGH X XXX

NOMINAL X XX

LOW X

VERY LOW X

15. Software Testing — The level of software testing performed during
software development.

R Rl Approved Standard Software Testing
: E ---------- Independent Verification and Validation
v Tt testing includes unit, major components,
N system integration testin
Pt Eeeseees customer witnessing of the Formal tests
Vv e Internal contractor procedures.

HIGH X XXX

NOMINAL X XX

LOW X

VERY LOW X
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D. Structural Complexity Measures

There are factors and characteristics of the software which are known very early in
the design process and which can be measured throughout the development process. The focus
of effort should be on identifying those factors and integrating them into a validatable metric
based on software internal properties yet reflecting quality and development progress at the
management level. There is some research leading in this direction.

There are two classical metrics of code structure. Software science [17] uses the
number of distinct operators nl, the number of distinct operands n2, the total number of opera-
tors N1, and the total number of operands N2 to calculate several characteristics such as

program vocabulary = 1 = nl +n2

observed length = L = N1 + N2

estimated length = Oy = nl(log2nl) + n2(log2n2)
volume = A" = L (logz2n)

difficulty = D = (n1/2)(N2/n2)

program level = L1 = 1/D

effort = E = V/L1

number of errors = B = V /3000 = E2/3/ 3000
alternate length = L” = log2 ((n1) ! ) + logz ((n2) ! )

of which volume is most often cited. The other classical metric is cyclomatic complexity [25]
in which a directed linear graph of the software execution path structure is analyzed. The
graph is made strongly connected by joining end to beginning. Then, N is the number of
nodes, E is the number of edges, SN is the number of splitting nodes, RG is the number of re-
gions of the resulting graph. The complexity C is calculated as

C=E-N+1=RG=SN+1.

Both of these metrics are often used as a baseline for evaluating other metrics because data are
relatively easy to obtain.

A most notable effort in the right direction is the work on software metrics based on
information flow [18, 19]. This method uses a lexical approach to measuring system connec-
tivity. Passed parameters and accesses to global data stores are tallied to give the number of
inputs and outputs for each module. Lines of source code are also tallied. The complexity of a
module is calculated as

complexity = (lines of code)*(inputs*outputs)2.

The lines of code estimate turns out to be a non—critical factor and does not need to be precise.
In fact, it was noted that the length factor may detract from the accuracy of the metric.

Thus, the complexity, calculated, reveals several things about the structure of the
code. For example, if the number of inputs and outputs is high, the module may be implement-
ing more than one elementary function. Large input*output can indicate stress points in the
system because more effect on the system is indicated. Inadequate refinement of modules also
leads to large 1/O product. Thus, high complexity for a module may not indicate a specific
problem but can show that there is a problem. The complexities of individual modules are
linearly summed to give the complexity of subsystems and systems.
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Information flow metrics correlate well with change records of UNIX operating sys-
tem maintenance [22]. In comparing with other standard complexity metrics, this method does
quite well. Correlation factor with system errors was .95 for information flow, .96 for
Halstead, and .89 for McCabe. Halstead and McCabe correlated at .84 but information flow
correlated .38 with Halstead and .35 with McCabe. This indicates a fair degree of or-
thogonality between information flow and the classical metrics of Halstead and McCabe.

Another metric [14] uses an abstract state machine description of the software. A
functional basis is used for state definitions. Links are then established in semantic nets which
reflect the requirements. The net links objects, sets and actions embodied in the system. The
state machines are described in three ways; by enumeration listing the states, by axiomatics
listing logical conditions characterizing the system, and by algorithmic analysis defining range
and domain. In this case, system analysis is made manageable by a hierarchical decomposition
of the system. The algorithmic paradigm provides a way to extend the state description to
mathematical methods. The most difficult part of the analysis is the mapping of requirements
to specifications. However, the method does reduce ambiguity by delineating explicit relations
in a defined context.

Structure and style contribute to software quality and should be factored into metrics.
For example, encapsulation of data, procedures, functions, and data structures can play an im-
portant role in the successful development of a software project particularly in avoiding lurking
side effects. A lurking side effect is one of those little illicit data item changes that jump out to
byte the unsuspecting software maintainer/user in the most embarrassing moment. The varying
degrees of coupling between software modules can have varying degrees of impact on the ar-
chitectural structure. The quality of cohesion within a module effects the conceptual complex-
ity of the module and should in some way be reflected in a quality metric. Yet, all criteria for
good software cannot be measured. Indeed, there are some software standards which should be
accepted as minimum attributes requiring no measurement.

There are issues critical to software development and quality which are not addressed
by the available metrics. Computability and formal verification form entire disciplines malig-
nant with active research. A great amount of maturity will be required in these areas before
relevant metrics can be integrated into system evaluation.

There are then many holes in the software metric picture. Obviously, that is why
much research is being published. Perhaps there is a way that many diverse properties and
concerns related to success of software systems can be brought together under a single simple
but powerful intuitive model which generates some useful metrics. A concept which did a
similar service in thermodynamics and information theory is the concept of entropy.
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III. A UNIFIED PARADIGM FOR SOFTWARE METRICS

Rather than relying on several metrics at various respective stages of software develop-
ment, this section describes a model by which some of the measures can be integrated into a
single one based on a physical analogy.

The concept of entropy has been suggested to interpret the development of software as a
process of reducing entropy of the system design [21]. Evaluation of hardware complexity has
also been done [23]. Notable use of an entropy measure has been done in evaluating software
design [27]. Entropy has been used as a metric for software complexity relative to cellular ar-
ray machines [15]. These uses of the concept of entropy are obviously different and not to be
confused, but the analogies are very useful intuitively when used with care.

In physics, change in entropy S can be defined as an integral of the reciprocal of tempera-
ture T with respect to the differential of heat dQ. For a reversible process with volume chang-
ing from V1 to V2, the change in entropy Si to S2 is

S2-S1=fdQ/T =k(In V2—-1n V1),
giving entropy a basically logarithmic form [16]. The base of the logarithm and the constant k
determine the units of measure. In communication theory, the logarithm base is 2 so that the
unit of measure is the bit. From communication theory [32, 7], entropy is expressed as

S = -2 pi log2p;,
where pi is the probability of message i occurring and

Zipi =1

In software design evaluation, entropy is expressed as

| xil |x]
HPp,...,Pn) = 3 = 1 — logg —,
(l n) 1 le ng |x||

where x1, ... , xn are distinct classes of subsystems called and

Pi=|xi| /]|x]
is the probability of subsystem x; being activated. For software complexity on cellular array
machines, entropy is defined as the maximum performance factor over the array maxa PFc
times the number c of cells in the array or

S = ¢*maxa PFec.
The performance factor PF¢ is defined in terms of SPFci, the product of the number of states
used times Hamming distance between binary state use vectors, and LPFg, the product of the

number of communication links used times the Hamming distance between binary link use vec-
tors, as
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PFc = Zjlog2 (1 + SPFci + LPFqi).

None of these metrics provide what is needed for software tracking. However, by nature,
entropy should be linearly summable; yet the combinatoric nature of error probabilities suggest
that factors should be combined multiplicatively. Therefore, the traditional logarithmic nature
seems correct. What, then, will be the precise form and what are the contributing factors for
software entropy?

For software, entropy should indicate in some sense the possibility of an error occurring.
Many factors contribute to errors such as typographical errors, variables exceeding boundaries,
logic errors, shear size of the project, the nature of the language used, syntax errors, etc. Re-
ducing the possibility of error, reducing entropy, is done in different ways at different times in
the development process. For example, during requirements specification, limits and perform-
ance parameters must be clearly spelled out keeping in mind the development methodology to
be used. In the initial design phase, entities, operations, and communication must be formu-
lated to minimize entropy by using sound architecture and methodology. During testing, each
test should lower system entropy by proving doubtful constructs in the code and verifying that
requirements are met. When errors are found in testing, entropy increases. New tests must be
designed to again lower entropy to pre—error—detection levels. Thus, to measure entropy, dif-
ferent data must be used in different phases of a project yet scale factors must be included for
compatibility of the metric throughout the project. The process would be structured as shown
in Figure 2.

The basic form for software entropy is
SWENT =Z¢[Zi ((U/T)log (sfr))i];,

where cj is an empirical constant based on the software development phase j under analysis.
The external sum is taken over the various phases. The internal sum is taken over the individ-
ual modules i of the software. The factor T reflects the quality of design usage of entities such
as variables, subprograms, and data structures. The factors reflects the number of operational
states or modes of the module i. The factor f measures the interface size for the module. The

cyclomatic complexity for the state structure is p. Each of these factors will be described in
detail.
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Figure 2. Entropy Metric Cycle,

For the initial highest level design phase, the constant ¢ would be relatively large due to
the uncertainties of measurements and estimates at that stage. It must also be large since the
number of measurable factors is rather small yet the factors which can be measured have po-
tential for high impact on system entropy. In the later stages where source code data are avail-
able, ¢ would be relatively small. This is the case because more factors will be summed and
because each factor has potentially less relative impact on system entropy. The constant ¢ is
negative for the test phase because testing will decrease the system entropy indicating an in-
crease in confidence in the software. The entropy of a system will never be zero or negative so
the choices of the constants cj should be chosen appropriately. Each time new design or revi-
sions are made, entropy will increase and will have to be brought back down by more testing.

The factor T is called “influence” and is computed as
T=15 I (wi mijj)x,

where the product is made over all attributes i for all of the specific entities j being evaluated.
Influence, T, is intended to be a gauge of the effects of encapsulation and abstraction of entities
within the sphere of influence of the module being considered. The entities for which T is cal-
culated for each module includes all variables, data structures, subprograms, and external utili-
ties referenced by the given module. The factor wi for each attribute i is a weighting factor
which is empirically determined. w is higher for attributes which have higher correlation with
module success. Success in this sense is determined by faults detected in systems for which
data has been collected. The exponent x is -1 or +1 depending on whether the attribute is ad-
vantageous or detrimental to software quality. The factor m; for each attribute i is the actual
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measure of the attribute. The attributes and their measurement methods are shown in Table 3.
If the factor i does not apply to a given entity, the value of wi mj is unity so that T is not ef-

fected.

Attribute

TABLE 3. Code Characteristics Factors.

Measurement

D - ————— —— — D ——— ——————— . ——— ————— —— — —————— ————————— — ——

Scope/

the scope of accessed
entitlies

Value Range/

is the range of value
restricted and how

Access/

difficulty extracting
an item from a
structure

Coupling Effect/

depth of coupling
effect of the item

Exception Scope/

depth of resolution
Hardware Dependency/
Initialization/

initial value defined
Scaling Required/

use of scale factors
Error Estimate/

impact of calculation
errors

Loop Termination/
loop control effect
Name Length/
encourage meaning
in naming entities
Requirement Item/
defined in system
specification
Internal Cohesion/

classes of data controlled

by entity

wn HW N

o

10

11

12

13

14

15

+1
-1
-1

-1

+1

+1

21

count modules accessing

boolean existence of specified range

numberic range relative to median
enumeration cardinality

number of nodes traversed to value

value = 1, control = 2, rendezvous = 3

count subprogram levels to resolve

boolean (numeric range, type, format)
boolean

float = 1, integer = 5, interface = 20

% relative numeric error introduced

boolean yes for loop terminators

count characters in name

boolean existence of traceability

count classes of data items




TABLE 3. Code Characteristics Factors (continued).

Type/ 16 +1 existence and variegation booleans
unique type declared
Validity/ 17 +1 boolean: provably valid
provably valid calculation 18 -1 probability of invalid result
for value
Volatility/ 19 -1 value changes per operation cycle
changability of the 20 -1 changes in entity definition
Com;lrgrlxtt);ry/ 21 +1 characters in descriptive comments

The factor f, called “interface”, measures the impact of the module through inputs, outputs
and, possibly superfluously, the size of the module. This factor has been studied and validated
to a certain extent {18]. It is calculated as

f = loc*(inputs*outputs)2 = 1 (i0)2,

where “loc” is the number of lines of source, “inputs” is the number of inputs to the module
and “outputs” is as expected. It has been shown that loc may not be significant [ibid].

The factor s, called “states”, is a count of the states or modes resident in respective mod-
ules of software. That is

s = number of states.

This measure may be rather subjective, but it can be calculated from an enumeration typed
variable which can define the state of the software module. This factor harks back to the usage
of machine state definitions of software complexity [14, 8, 15,].

The factor p, called “paths”, is the log2 of count of the execution paths in the algorithms
of a module. For example, paths may be counted in certain types of algorithms as 2b where b
is the number of binary branch decision statements or as the number of linear independent exe-
cution paths in the Cyclomatic Complexity sense.

During the testing phase of software development, the entropy should decrease. This hap-
pens through the combination of p, the number of paths tested, and the factor cj being negative.
As errors are discovered in testing, entropy terms are added back in for that module until test-
ing can bring the figure back down to the normal decreasing trend for testing phase.

The calculation of entropy includes the factors most important for gauging software qual-
ity and progress. One remaining problem with the use of this entropy as a metric for software
quality and progress is that it is not an absolute quantity and a relativity base must be estab-
lished for given types and sizes of applications. A graph of the progress of entropy trends dur-
ing the development of a project has more meaning than a single abstract value at a single
point in time. The main advantage is the ability to track software as it becomes more refined.
Comparisons can be made between software projects which use the metrics consistently. En-
tropy variability throughout the software project gives a basis for intuitive understanding of
progress. Also, reliability and fault tolerance issues can be addressed using this concept of en-

tropy.
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IV. APPLICATION OF METRICS TO THE ADA ENVIRONMENT

The structure of the language Ada contributes particularly well to the use of software en-
gine metrics. The elements required for calculating T, s, f, and p are explicit in Ada program
code. Not only that, software engine metrics, through the mechanism of decreasing entropy in
the system, can encourage the use of constructs provided in Ada explicitly for increasing the
reliability and maintainability of software [6].

A. Mapping to the Structural Features of Ada

Encapsulation of variables, subprograms, data structures, data types, etc. are explicit.
Data items are strongly typed, specific in range or by enumeration, initializable, restricted in
scope, and over—loadable with explicit exeception handling. Machine dependencies are trace-
able through types, number sizes, and pragmas. Compileable modules are explicit in packages
with the ability to abstract structures and subprograms through the use of private types. Reuse
is encouraged through the explicit use of generic subprograms. Communication of parallel pro-
cedures is explicit through task rendezvous. Applications of the software engine metrics are
more difficult with other languages because of differences in available compilers. However,
given that the measure collection tool is compatible with the language compiler, the metrics
can be collected and used for tracking the progress and quality of the software product as
shown in Figure 3.

The Module Communication Diagram is a module which encapsulates and abstracts
the graphics used to specify the highest level design of the software system. It operates in the
earliest phases of software development, requests acceptance of data and sends, to the System
Structure Database and the Variable Property Database, information which it has extracted
from the design graphics. The Variable Property Database is a repository for information about
the properties of variables and data structures in the system. The System Structure Database is
a repository for information about the structure of the software. The Operator is an external
interface which allows control of metric gathering system. The PDL/Source Code module en-
capsulates and abstracts the collection of data from the program design language and program
code. Operating in the software design and coding phases, it requests access and sends data to
the Variable Property Database and the System Structure Database. The Tests module per-
forms the analogous task through the software testing phase of the development. The Metric
Repository collects data from the Variable Property Database and the System Structure Data-
base, calculates statistics for metric validation and computes the metrics. The results are output
at the request of the operator.

Several commercial and public domain data collection and metric calculation systems
are available such as LOGISCOPE [35], ADAMAT [12], and tools available from the National
Ada Repository.

B. Development of a Validation Database

The Software Engineering Directorate (SED) of the U.S. Army Missile Command’s
Research, Development and Engineering Center is responsible for developing guidelines to in-
sure that software acquired for missile systems is maintainable. The loop closes when SED
becomes responsible for the maintenance of the software. In this configuration, SED has ac-
cess to actively maintained systems and can collect metrics data it needs for acquisition. Some
research has been done by SED staff in this field.
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Figure 3. Ada Data Extraction System.
The scope of effort for a useful study would follow a standard structure for such projects.
The outline of tasks appears as follows:
1. Design systems for data collection regarding

a. design attributes
b. code structure
c. maintenance hours per module.

2. Select systems for analysis.
3. Collect data on relevant system components such as

a.  design attributes
b. structure attributes of code
c. personnel hours of maintenance per module.

Correlate design and structure data with maintenance data.
Analyze and summarize experimental results.
Write and publish results

e
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7. Design application systems for use of metrice in acquisition of missile system
software.

The data collection and analysis effort would concentrate on the parameters required for valida-
tion of the Software Engine Metrics model as well as standard metrics which can be further

validated. Raw data should be formatted in 2 manner which gives high resolution access to the
raw measurement process.
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Director, Technical Information

Defense Advanced Research Projects Agency
1400 Wilson Blvd

Arlington, VA 22209

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Commander, U.S. Army Material Command
Attn: AMCQA

5001 Eisenhower Ave.

Alexandria, VA 22333-0001
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Commander, U.S. Army Natick RA&E Center
Attn: STRNC-EP
Natrick, MA 01760-5014

Commander, U.S. Army LABCOM
Attn: AMSLC-PA
Adelphi, MD 20783

Commander, U.S. Army Communication Electronics Command
Attn: AMSEL-PA
Ft. Monmouth, NJ 07703-5000

Commander, U.S. Army Aviation Systems Command
Attn: AMSAV-Q

4300 Goodfeilow Blvd.

St. Louis, MO 63120~1798

Commander, U.S. Army Test and Evaluation Command
Attn: AMSTE-AD
Aberdeen Proving Ground, MD 21005

Director, U.S. Army Management Engineering College
Attn: AMXOM-DO
Rock Island, IL 61299-7040

Commander, U.S. Army Operational Test & Evaluation Command
Attn: CSTE-ESE-S

Park Center, 4501 Ford Ave.

Alexandria, VA 22302-1458

Commander, U.S. Army Health Care System Support Activity
Attn: Mr. Jack Huffman

Bidg. 2000

Ft. Sam Houston, TX 78234-6050

Commander, U.S. Army Material Command
Attn: AMCDE-CS, Mr. Howard Kea

5001 Eisenhower Ave.

Alexandria, VA 22333

U.S. Army Aberdeen Proving Ground
Attn: STEAP-IM-AL
Aberdeen Proving Ground, MD 21005-5001

Director, U.S. Army Ballistic Research Lab
Attn: AMXBR-OD-ST
Aberdeen Proving Ground, MD 21005-5066

HQ, U.S. Army TECOM
Attn: AMSTE-TO-F
Aberdeen Proving Ground, MD 21005-5055
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Commander, U.S.A. Communications & Electronics Command
Attn: AMSEL-ME-PSL
Ft. Monmouth, NJ 07703-5007

HQ, U.S. Army CECOM
Attn: AMSELL-LG-JA
Ft. Monmouth, NJ 07703-5010

Commander, U.S. Army Aviation Systems Command
Attn: AMSAV-DIL

4300 Goodfellow Blvd, East 2

St. Louis, MO 63120-1798

Commander, U.S. Army Missile Command
Attn: AMSMI-RD-CS-R
Redstone Arsenal, AL 35898

Commandant, U.S. Army School of Engineering & Logistics
Attn: AMXMC-SEL-L

Red River Army Depot

Texarkana, TX 75507-5000

DIRECTOR

U.S. Army TRADOC Systems Analysis Acty
Attn: ATAA-SL (Tech Library)

White Sands Missile Range, NM 88002

U.S. Army Aviation School Library
P.C. Drawer O
Ft. Rucker, AL 36360

USMA
Attn: Mr. Egon Weiss, Librarian
West Point, NY 10996

Commandant

U.S. Army Engineering School
Attn: Library

Ft. Belvior, VA 22060

U.S. Army Humphey’s Engr. Spt. Activity
Attn: Library Branch
Ft. Belvior, VA 22060

Engineer Topographic Lab

Attn: STINFO
Ft. Belvior, VA 22060
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Pentagon Library

Attn: Chief, Reader’s Service Branch
The Pentagon, Room 1A518
Washington, DC 20310

U.S. Army Corps of Engineers
Attn: DAEN-ASI-Tech Library
20 Massachusetts Ave. NW
Room 3119

Washington, DC 20314

U.S. Army Operational Test & Evaluation Agency

Attn: Tech Library
5600 Columbia Pike, Room 503
Falls Church, VA 22401

Naval Mine Warfare Engineering Activity
Code 322
Yorktown, VA 23691

Commander

Naval Facilities Engineering Command
Attn: Library

200 Stovall St.

Alexandria, VA 22332

David W. Taylor Naval Ship RD&E Center
Library Division, Code 5220
Bethesda, MD 20084

Naval Air Systems Command
Attn: Tech Library

Air 00D4

Washington, DC 20361

Naval Surface Weapons Center
Attn: Tech Library
Dahigren, VA 22448

Naval Research Lab
Attn: Tech Library
Washington, DC 20375

Dist-4




Naval Surface Weapons Center
Attn: Tech Library
Silver Springs, MD 20910

Naval Sea Systems Command
Library Documentation Branch
Sea 9661

Washington, DC 20362

Naval Ship System Engineering Station
Technical Library

Code 011F

Bldg 619

Philadelphia, PA 19112

Naval Training Equipment Center
Attn: Technical Library
Orlando, FL 32813

HQ, USMC

Marine Corps Technical Library
Code LMA-1

Washington, DC 20314

Air Force Systems Command
Technical Information Center
HQ AFSC/MPSLT

Andrews AFB, DC 20334

Defense System Management College
Attn: Library

Bldg 205

Ft. Belvior, VA 22060

Director, Defense Nuclear Agency
Attn: TITL
Washington, DC 20305

Dist-5/(Dist—6 Blank)




